前言:回收老人油漆,回收过期蛋白粉,回收萜烯树脂,回收食品色素,高价回收:现金结算
今日咨询-阜新回收十二烷基苯磺酸-回收卡波姆-现金结算-宣传视频
磷酸或正磷酸,化学式H3PO4,分子量为97.9724,是一种常见的无机酸,是中强酸。由十氧化四磷溶于热水中即可得到。正磷酸工业上用硫酸处理磷灰石即得。磷酸在空气中容易潮解。加热会失水得到焦磷酸,再进一步失水得到偏磷酸。磷酸主要用于制药、食品、肥料等工业,也可用作化学试剂。发现简史继德国商人波兰特发现磷、德国化学家孔克尔制出磷后,英国化学家波义耳也独立制出了磷,他也是最早研究磷性质及化合物的化学家,他在1682年fabiao的lunwen《一种观察到的冷光的新实验》中写到“磷在燃烧后生成白烟,白烟与水作用后生成的溶液具有酸性。”其中的白烟正是磷酸酐(五氧化二磷),而与水作用生成的溶液即为磷酸,然而他并未对磷酸进行进一步的研究。研究磷酸最早的化学家是法国化学家拉瓦锡。1772年,他做这样的实验:将磷放在以汞密封的钟罩里使其燃烧。实验结果而得出这样的结论:一定量的磷能燃烧于某容量的空气中;磷燃烧时生成无水磷的白色粉片,如细雪一般;燃烧后瓶中的空气约剩原来容量的80%;磷燃烧后较燃烧前约重2.5倍;白色粉片溶于水即成磷酸。拉瓦锡还证明磷酸可用浓硝酸和磷反应制得。大约过了一百多年,德国化学家李比希做了许多农业化学的实验,揭开磷和磷酸对植物生命的价值。1840年李比希著的《有机化学在农业和生理学上的作用》中,科学地论证了土壤的肥力问题,并指出磷对植物的作用。同时,他还进一步探究了磷酸及磷酸盐作为肥料的应用,从此磷酸的生产进入大规模化时代。折叠编辑本段物质结构正磷酸是由一个单一的磷氧四面体构成的磷酸。在磷酸分子中P原子是sp3杂化的,3个杂化轨道与氧原子间形成3个σ键,另一个P—O键是由一个从磷到氧的σ配键和两个由氧到磷的d-pπ键组成的。σ配键是磷原子上的一对孤对电子向氧原子的空轨道配位而形成。d←p配键是氧原子的py、pz轨道上的两对孤对电子和磷原子的dxz、dyz空轨道重叠而成。由于磷原子3d能级比氧原子的2p能级能量高很多,组成的分子轨道不是很有效的,所以P—O键从数目上来看是三重键,但从键能和键长来看是介于单键和双键之间。纯H3PO4和它的晶体水合物中都有氢键存在,这可能是磷酸浓溶液之所以粘稠的原因。折叠编辑本段物理性质熔点:42℃沸点:261℃(分解,磷酸受热逐渐脱水,因此没有自身的沸点)市售磷酸是含85%H3PO4的粘稠状浓溶液。从浓溶液中结晶,则形成半水合物2H3PO4·H2O(熔点302.3K)。折叠编辑本段化学性质磷酸是三元中强酸,分三步电离,不易挥发,不易分解,几乎没有氧化性。具有酸的通性。pKa1:2.12pKa2:7.21pKa3:12.67(1)浓磷酸可以和氯化钠共热生成氯化氢气体(与碘化钾、溴化钠等也有类似反应),属于弱酸制强酸:NaCl + H3PO4(浓) ==△== NaH2PO4 + HCl↑原理:难挥发性酸制挥发性酸(2)磷酸根离子具有很强的配合能力,能与许多金属离子生成可溶性的配合物。如Fe3+与PO43-可以生成无色的可溶性的配合物[Fe(PO4)2]3-和[Fe(HPO4)2]-,利用这一性质,分析化学上常用PO43-掩蔽Fe3+离子,浓磷酸能溶解钨、锆、硅、硅化铁等,并与他们形成配合物。(3)磷酸受强热时脱水,依次生成焦磷酸、三磷酸和多聚的偏磷酸。三磷酸是链状结构,多聚的偏磷酸是环状结构。2H3PO4 ==473-573K== H4P2O7 + H2O3H3PO4 ==573K以上== H5P3O10 + 2H2O4H3PO4 ==高温== (HPO3)4 + 4H2O(4)需要特别注意的是,浓热的磷酸能腐蚀二氧化硅,生成杂多酸。但由于反应原理过于复杂,因此中学课程将其简化为qingfusuan是唯一能与二氧化硅反应的酸。浓热磷酸还能分解绝大部分矿物,如铬铁矿、金红石、钛铁矿等。酸根离子盐类磷酸盐有三类:正盐(含PO43-),酸式盐磷酸一氢盐(含HPO42-)和磷酸二氢盐(含H2PO4-)。三类盐之间的关系为:(1)溶解性正盐和一氢盐:除钾、钠、铵等少数盐外,其余都难溶于水,但能溶于强酸。二氢盐:都易溶于水。(2)相互转化向磷酸中滴加碱液,随着碱液的增多,先后生成磷酸二氢盐、磷酸一氢盐、磷酸盐。向磷酸盐溶液中滴加强酸,随着酸的增多,先后生成磷酸一氢盐、磷酸二氢盐、磷酸。(3)离子共存的问题①H2PO4-、 HPO42-、PO43-与H+不能共存。②H2PO4-、HPO42-与OH-不能共存。③H2PO4-与PO43-不能共存(化合生成HPO42-)。④H2PO4-与HPO42-可共存,HPO42-和PO43-可共存。检验磷酸盐与过量钼酸铵在浓硝酸溶液中反应有淡黄色磷钼酸铵晶体析出,这是鉴定磷酸根离子的特征反应:PO43- + 12MoO42- + 3NH4+ + 24H+ ==== (NH4)3[P(Mo12O40)]·6H2O↓ + 6H2O折叠编辑本段制备方法磷酸的原料主要是磷矿(主要成分为氟磷酸钙Ca10F2(PO4)6)和以硫酸为主的无机酸。实验室制法:实验室可用强酸+磷酸盐制备磷酸。3H+ + PO43- ==== H3PO4 (原理:强酸制弱酸)湿法:工业上常用浓硫酸跟磷酸钙、磷矿石反应制取磷酸,滤去微溶于水的硫酸钙沉淀,所得滤液就是磷酸溶液。或让白磷与硝酸作用,可得到纯的磷酸溶液。3P4 + 20HNO3 + 8H2O ==== 12H3PO4 + 20NO↑热法:白磷在空气中燃烧生成五氧化二磷,再经水化制成。注意必须用热水,因为五氧化二磷会和冷水反应生成剧毒的偏磷酸。多磷酸的生产:多磷酸的生产主要由正磷酸在适当条件下脱水而成。重结晶法:将工业磷酸用蒸馏水溶解后,把溶液提纯,除去砷和重金属等杂质,经过滤,使滤液符合食品级要求时,浓缩,制得食用磷酸成品。折叠编辑本段安全防护磷酸无强氧化性,无强腐蚀性,属于中强酸,属低毒类,有刺激性。LD50:1530mg/kg(大鼠经口);2740mg/kg(兔经皮)刺激性:兔经皮595mg/24小时,严重刺激;兔眼119mg严重刺激。接触时注意防止入眼,防止接触皮肤,防止入口即可。遇H发孔剂可燃; 受热排放有毒磷氧化物烟雾。磷酸蒸气能引起鼻黏膜萎缩;对皮肤有相当强的腐蚀作用,可引起皮肤炎症性疾患;能造成全身中毒现象。空气中最高容许浓度为1mg/m3。生产人员工作时应穿戴防护用具,如工作服、橡皮手套、橡皮或塑料围裙、长筒胶靴。注意保护呼吸器官和皮肤,如不慎溅到皮肤,应立即用大量清水冲洗,把磷酸洗净后,一般可用红汞溶液或龙胆紫溶液涂抹患处,严重时应立即送医院诊治。折叠编辑本段应用领域农业:磷酸是生产重要的磷肥(过磷酸钙、磷酸二氢钾等)的原料,也是生产饲料营养剂(磷酸二氢钙)的原料。工业:磷酸是一种重要的化工原料,主要作用如下:处理金属表面,在金属表面生成难溶的磷酸盐薄膜,以保护金属免受腐蚀。和硝酸混合作为化学抛光剂,用以提高金属表面的光洁度。生产洗涤用品、杀虫剂的原料磷酸酯。生产含磷阻燃剂的原料。食品:磷酸是食品添加剂之一,在食品中作为酸味剂、酵母营养剂,可口可乐中就含有磷酸。磷酸盐也是重要的食品添加剂,可作为营养增强剂。医学:磷酸可用于制取含磷药物,例如甘油磷酸钠等。折叠编辑本段生物学影响饮料添加物磷酸用在食品添加剂,素来有骨质疏松症的疑虑。以往的调查是借由问卷选填饮用可乐及其他碳酸饮料的频率,发现饮用碳酸饮料的受试者较易有骨质疏松症的问题。研究指出,饮用碳酸饮料者没有比其他人摄取更多的磷,但身体的钙磷比却显著的降低。《美国临床营养学杂志》(American Journal of Clinical Nutrition)中的有项研究在1996年至2001年使用双倍能量的X光去探测1672位女性及1148位男性的骨密度,发现磷酸确实会降低骨密度,此研究提供了比以往使用问卷调查更有利的证据。另一项临床研究指出,磷的摄取会降低骨密度。但此实验以磷的总摄取量为主,并未明确证明使骨密度降低的主因是磷酸。但在Heaney及Rafferty使用钙平衡的方法对于20至40岁的女人一日习惯饮用三杯以上(680 mL)碳酸饮料进行的临床研究,却发现含磷酸的碳酸饮料与钙流失无关。研究比较了水、牛奶以及各种非酒精饮料(两种含咖啡因,两种不含咖啡因,两种含磷酸,两种含柠檬酸)。他们发现,相较于水,只有牛奶以及另外两项含有咖啡因的饮品会增加尿液中的钙含量,而添加有磷酸的咖啡因饮料和含咖啡因的饮料钙量流失速度差不多,并没有扩大咖啡因造成流失钙质的影响。由于研究显示咖啡因所造成的钙质流失会逐渐补回来,而磷酸在实验中又没有对钙质流失造成影响。Heaney及Rafferty认为前面实验受试者骨质疏松的原因是受试者饮用碳酸饮料,造成牛奶摄取量的渐少,造成钙摄取量不足。咖啡因也是被认为造成骨质疏松的元凶之一。